Под декомпозицией алгоритма понимают разложение его o6щeй алгоритмической схемы на вспомогательные алгоритмы (процедуры и функции) и головной алгоритм. Напомним, такая задача ставится перед студентом при выполнении курсовой или контрольной работы. Одним из условий, которое должно быть обязательно выполнено, является наличие в работе хотя бы одной процедуры или функции (кроме того, работа должна содержать текст описания всех процедур и головного алгоритма).
Метод, при помощи которого обычно выполняется декомпозиция, достаточно прост. Сначала вычленяют основные этапы предстоящей работы. Наиболее сложные этапы оформляет в процедуры или функции верхнего уровня. Затем, если необходимо, такие этапы делят на этапы более низкого уровня. Наиболее сложные из них также оформляют процедурами или функциями и т. д. Следуя методу «от сложного к простому», в конечном итоге достигают решения поставленной задачи. Приведем пример декомпозиции для решения задачи сортировки массива. Эта задача была решена ранее без использования вспомогательных алгоритмов. Решение задачи декомпозиции состоит из трех основных этапов: 1) ввода данных, 2) сортировки массива и 3) вывода отсортированного массива. Первый и третий этапы вследствие их простоты не нуждаются в дальнейшей декомпозиции, поэтому выполняются в головном алгоритме. Второй этап представляет достаточно сложный и самостоятельный фрагмент вычислений, поэтому его целесообразно выделить в отдельную процедуру, которой можно дать имя Sort.
Этап сортировки, в свои очередь, состоит из двух этапов: 1) установления необходимости сортировки и (N–1) – кратного прохода по массиву и 2) нахождения наименьшего элемента во фрагменте массива и перестановки этого элемента с начальным элементом фрагмента. Поскольку последний этап многократно повторяется при выполнении первого этапа, то его можно оформить в отдельную процедуру. Этой процедуре можно дать имя Tra (от английского transposition – перестановка). Блок-схемы головного алгоритма, процедуры Sort и процедуры Тrа показаны на рисунке 1 и 2 соответственно.
Дадим краткое, описание взаимодействия этих алгоритмов в ходе решения задачи сортировки.
Выполнение начинается с головного алгоритма (рисунок 1). В блоке 2 вводятся исходные данные, затем в блоке 3 выполняется сортировка массива. В блоке 4 отсортированный массив выводится и алгоритм заканчивает работу. Сортировка массива в блоке 3 головного алгоритма выполняется обращением к процедуре Sort, показанной на рисунке 2. Переменные A и N являются фактическими параметрами, Переменные А и N, которые использованы в блок-схеме алгоритма Sort, является формальными параметрами.
При обращении к процедуре Sort на вход подаются параметры A и N. В результате в теле процедуры производится замена формального параметра R на фактический параметр A, аналогично формальный K заменяется на фактический N.
Далее в блоке 2 проверяется необходимость сортировки массива R. Затем, если такая необходимость будет установлена, в цикле 3-4 будет выполняется сортировка массива. При всяком значении счетчика цикла в его теле производится нахождение наименьшего элемента фрагмента и его перестановка с начальным элементом этого фрагмента. Эти операции выполняются отдельно с помощью процедуры Tra. Как видно из рисунка 3, на вход процедуры Tra нужно подать имя массива (A), количество элементов (N) и номер элемента (i), которым начинается фрагмент. В теле процедуры в блоках 2-5 отыскивается наименьший элемент фрагмента (v) и его номер (k). Затем в блоке 6 выполняется вышеназванная перестановка элементов.
Таким образом, весь процесс управляется головным алгоритмом, который выполняет сортировку посредством обращения к вспомогательному алгоритму – процедуре Sort.
Тот, реализуя решение своей задачи, в своя очередь несколько раз вымывает еще более простой вспомогательный алгоритм процедуру Tra. В результате такого взаимодействия достигается решение задачи в целом.
В заключение приведем пример алгоритма-функции. Она похожа на процедуру, но в отличие от последней должна в теле алгоритма еще содержать команду присваивания результата имени функции, т. к. результат после вычислений сохранится в переменной, представленной именем функции.
Рассмотрим задачу вычисления факториала числа N! = 1.2.3. . .N. Результатом будет одно число, поэтому лучше алгоритм оформить в виде функции.
Ее блок-схема показана на рисунке 4. Переменная К используется для накопления произведения и, поскольку 0! = 1 и1! = 1, то в блоке 2 ей сразу присваивается значение 1. Далее, если N>1, то в цикле, образованном блоками 4-5, накапливается искомое произведение и помещается в переменную К. В блоке 6 имя Fact функции получает значение вычисленного произведения из ячейки К. Для процедур действия, размещенного в блоке 6, не может быть, а для функций оно должно быть обязательно, поскольку иначе значение функции на выходе окажется неопределенным.
Обращение к функции в других алгоритмах (головных, процедурах, функциях) производится по ее имени.
При этом оно может входить в состав выражений. В качестве фактических параметров могут быть использованы как переменные, константы, так и целые выражения. Важно только, чтобы фактический параметр был совместим по типу с формальным, который содержится в заголовке описания алгоритма.
Пример использования функции Fact показан на рисунке 5. В операторе присваивания используется обращение к функции для N = 6. После передачи этого значения в алгоритм рисунке 4 и вычислений внутри него результат будет сначала присвоен имени функции, т. е. переменной Fact, а затем в операторе присваивания — переменной L.